Appendix 1.

Study characteristics including quality scores

Study of a Quantitative Method	Study Aim (Subjects of Healthcare Education)	Design (Participants)	Outcome Measures	Summary of Results	Application/ Technologies (Training time)	Display System	MERSQI Score (18)	Overall Rating (7)
Abhari et al. (2015)	Evaluation of an HMD-based guidance system compared with three planning environ- ments (Resection planning of brain tumour from images and head phantom)	Single-group posttest (Study 1 and 2) (10 novices/non-clini- cians) Two-group non-ran- domized comparison (Study 3) (7 clinicians and 14 novices/non-clini- cians)	Test: 1) Difference in points of entry 2) Deviation between angles of surgical path 3) Accuracy 4) Response time 5) Index of performance	AR/MR significantly im- proved non-clinicians' per- formance (p<.01) compared to conventional planning en- vironments (Study 1 and 2) AR/MR guidance signifi- cantly reduced the time of the task performed by clini- cians (p<.05) (Study 3)	Self-developed for HMD with tracker recognizing physical and virtual repre- sentations of a head phan- tom. Connected with a foot pedal to interact with the system and to toggle between AR and MR (Not reported)	AR/MR	11.5	4
Aebersold et al. (2018)	Preliminary evaluation of a procedure training applica- tion (Simulating nasogastric tube (NGT) insertion on phan- tom)	Mixed methods study: Randomized controlled trial (RCT) and survey (69 nursing students, Control=34; AR=35)	Test: 1) Self-developed check- list for performance Questionnaire: 2) Likert scale on LE	Statistically significant cor- rect placement of NGT through all checklist items in the AR group vs. control (p<.011). Participants' agreed /strongly agreed that AR was better for visualization (p<.01) and useful as tool in skill training (p<.015)	Company-developed appli- cation for mobile devices (20-25 minutes)	AR	15.5	5

Albrecht, Folta- Schoofs, Behrends, & Von Jan (2013)	Comparative study of an application (Learning of gunshot wounds)	Mixed methods study: RCT (pretest and post- test) and survey (10 medical students, Control=4; AR=6)	Test (pre- and post- completion): 1) Self-developed single choice (improvement) Questionnaire: 2) AttrakDiff2 (Likert scale) on LE 3) POMS on Mood States (pre- and post- completion) Observation (by non- participants): Directly on learning be- havior	The test score was signifi- cantly improved in AR group (p<.03) Hedonic quality was signifi- cantly favored by AR group (p<.005). Fatigue and numbness signif- icantly decreased, and vigor rose in the AR group. Observations showed inter- active discussion in AR group vs. individual ap- proach in control group	Self-developed application for mobile devices recogniz- ing markers overlaying im- ages onto user's body (30 minutes)	AR	14.5	4
Bifulco et al. (2014)	Investigation of the feasibil- ity of an HMD-based appli- cation (Recording an electrocardio- gram (ECG) on phantom and healthy patient)	Two-group non-ran- domized comparison (20 non-clinicians, man- ikin=10; patient=10)	Test: 1) Accuracy (average er- rors in mm) 2) Displacement errors (max error)	Average positioning errors of precordial electrodes were better on phantom vs. healthy patient. Max errors for the V6-lead <16 mm in both tests did not exceed clinical threshold of 25 mm	Self-developed for HMD with webcam recognizing markers attached to ECG de- vice and phantom-patient (Few minutes)	AR	10.5	3
Ferrer-Torregrosa, Torralba, Jimenez, García, & Barcia (2015)	Comparison of an applica- tion (Learning anatomy of the lower limb)	Mixed methods study: RCT and survey (211 students of anat- omy, Control=134; AR=77)	Test: 1) Self-developed multi- ple choice Questionnaire: 2) Self-developed on LE (metacognitive percep- tion)	The AR group achieved sig- nificant better test result (p=.0001), and significantly surpassed the control group in terms of metacognitive perception (p<.05)	Self-developed for computer with webcam recognizing markers in printed book (Not reported)	AR	15.5	4

Ferrer-Torregrosa et al. (2016)	Comparison of a didactic aid based on AR with images and video (Learning anatomy of the foot muscles)	Mixed methods study: Three-group RCT and survey (171 students of anat- omy, images/ Control= 60; Video=51; AR=60)	Test: 1) Self-developed Questionnaire: 2) Self-developed on LE (metacognitive percep- tion) 3) Follow-up interview on learning success	Significant higher test score was obtained with aid of AR compared with video and notes (p<.000). The metacognitive percep- tion was significantly favored by the AR group (p<.05), also sharing higher expectations for AR-based learning suc- cess.	Company-developed for mo- bile devices recognizing markers in printed book (14 days)	AR	13.5	4
Huang et al. (2018)	Investigation of the feasibil- ity of an HMD-based appli- cation (Simulating US-guided CVC on phantom)	Mixed methods study: Prospective RCT and survey (32 novice operators, Control=16; AR=16)	Test: 1) Cannulation time 2) Procedure time 3) Adherence level Questionnaire: 4) Expert-developed on LE (usability and ergo- nomics)	No significant difference in cannulation time (p=.09) or procedure time (p=.29) for the AR group vs. Control. Adherence level were signifi- cantly favored by the AR group (p=.003). The majority >80% accepted the device in terms of ergo- nomics.	Self-developed for HMD rendering an instructional slide show connected to a computer and a foot pedal to navigate between the content (5-10 minutes)	AR	13.5	5
Jeon, Choi, & Kim (2014)	Investigation of a novel visu- alization device (Simulating US-guided CVC on phantom)	Prospective cross-over trial (20 physicians, Control/AR=20)	Test: 1) Time 2) No. needle redirec- tions	Median of procedure time was clinically significant re- duced by 50% in AR group vs. Control (p<.001). The number of needle-redirec- tions significantly decreased in the AR group (p<.001)	Self-developed for micro projector attached to an ul- trasound probe projecting images directly onto phan- tom (10 minutes)	AR	11.5	2

Keri et al. (2015)	Evaluation of a needle guid- ance system (Simulating lumbar puncture on phantom with abnormal spine)	RCT (24 residents, Con- trol=12; MR=12)	Test (without assistive MR): 1) Needle path 2) Tissue damage 3) Procedure time 4) Needle insertion time 5) Success rate	Residents trained with MR visualization had better per- formance metrics: The MR group outperformed the con- trol group significantly for needle path (p=.02), tissue damage (p=.01) and needle insertion time (p=.05) but not procedure time (p=.06) or success rate (p=.99)	Company-developed for computer, ultrasound ma- chine, and tracker sensor- recognizing a virtual model of a vertebral column regis- tered to a physical phantom (20 minutes)	MR	12.5	5
Kugelmann et al. (2018)	Evaluation of the feasibility of a tutorial (Learning of human gross anatomy)	Prospective large-scale cross-over survey (880 medical students, Control/AR=880 /748 in survey)	Questionnaire: 1) Likert scale on LE 2) Advantages and dis- advantages 3) 4-item rating of the tutorial	The students agreed that the system increased the motiva- tion 59% and greatly im- proved 3D understanding 93.4% (strongly agreed). AR was found advantageous to traditional books and rated 'good' by 81.9%	Company-developed for a computer connected to two cameras recognizing sensor- landmarks and overlaying images onto user's body (Before/during the tutorial)	AR	7	2
Küçük, Kapakin, & Göktaş (2016)	Determination of learning effect via mobile AR (Learning of neuroanatomi- cal pathways)	Mixed methods study: RCT and survey (70 medical students, Control=36; AR=34)	Test: 1) Self-developed multi- ple choice 2) Self-translated Cogni- tive Load (Likert) Scale Questionnaire: 3) Interview on LE	Achievement was signifi- cantly higher (p<.05) and cognitive load significantly lower reported in AR group (p<.05). Of students in AR group 79% responded that mobile AR facilitated learning the sub- ject	Company-developed for mobile devices recogniz- ing markers in printed book (5 hour-course)	AR	14.5	5

Leitritz et al. (2014)	Evaluation of the usability of an HMD-based application for examination (Training ophthalmoscopy on head phantom and test person)	Mixed methods study: RCT and survey (37 medical students, Control=18; AR=19)	Test: 1) Accuracy (No. of sketched vessels) 2) Self-developed (OTS) score Questionnaire: 3) Likert scale on LE (self-evaluation)	Significantly higher accuracy (p<.0083) and OTS vs. Con- trol (p<.0033), but self-evalu- ation was not significantly different between the two groups	Company-developed for HMD connected to com- puter recognizing a model lens and a head phantom (15 minutes)	AR	14.5	4
Ma et al. (2016)	Investigation of precision of a personalized system (Learning of human gross anatomy)	Two single-group post- tests and survey (Study 1) (2 surgeons and 5 medi- cal students) (Study 2) (72 medical students)	Test (quantified by participants): 1) Accuracy (Study 1) Questionnaire: 2) Likert scale on usabil- ity 3) Likert scale on LE (Study 2)	Accuracy was demonstrated, and study participants fa- vored the usability. The learning potential of AR was accepted by 86.1%, and found valuable as a display system of anatomy 91.7%	Company-developed for computer connected to two cameras recognizing sensor-land- marks and overlaying images onto user's body (15 minutes)	AR	7.5	2
Mewes et al. (2019)	Provision and evaluation of a needle guidance system (Simulating MR-guided nee- dle insertion into calibration phantom)	Single-group posttest and survey (4 radiologists and 4 technicians)	Test: 1) Entry point error 2) Target point error 3) Insertion time Questionnaire: Expert-interview on LE (usability)	The targets were reached, and the answers of the users were predominantly positive supporting the suitability of the system	Self-developed for projector coupled to two cameras in- side a wide-bore MRI scan- ner recognizing markers on phantom (Until users felt confident)	AR	10.5	3
Moro, Štromberga, Raikos, & Stirling (2017)	Comparison of an AR mod- ule with two learning modes (virtual reality (VR) and tab- let) (Learning of skull anatomy)	Mixed methods study: Three-group RCT and survey (59 health science stu- dents, tablet/Con- trol=22; VR=20; AR=17)	Test: 1) Self-developed multi- ple choice Questionnaire: 2) Scale on adverse health effects 3) Likert scale on LE	No significant difference in test scores between the three learning modes (p<.874). Adverse effects as dizziness were significantly experi- enced in the VR group vs. AR and tablet group (p<.001). Perception of AR was high but not significant	Self-developed for mobile devices (10 minutes)	AR	13.5	5

Moult et al. (2013)	Evaluation of a needle guid- ance system (Simulating diagnostic US- guided facet joint injections on phantom)	RCT (26 pre-medical under- graduate students, Con- trol=13; MR=13)	Test (without assistive technology): 1) Success rate 2)Total time 3) Time inside 4) Total path 5) Path inside	Significantly higher mean success rate of 61.5% in MR group vs. Control 38.5% (p=.031). No significant dif- ference was found in any of the needle metrics of proce- dure times or path lengths	Company-developed for computer, ultrasound ma- chine, and tracker sensor- recognizing a virtual model of a vertebral column regis- tered to a physical phantom. (10 minutes)	MR	13.5	4
Noll, Von Jan, Raap, Albrecht, & Al- brecht (2017)	Comparison of an AR appli- cation with mobile blended learning environment (Diagnosing various skin dis- eases)	Mixed methods study: RCT (pretest, posttest, follow-up) and survey (44 medical students, mobile phone/Con- trol=22; AR=22)	Test (pre-, post- and fol- low-up-completion): 1) Self-developed single choice (improvement) 2) Retention (average decrease of correct an- swers) Questionnaire: 3) AttrakDiff2 on LE 4) POMS on Mood States (pre- and post- completion)	No significant difference in test score or retention of knowledge. No significant variations were found regarding experi- ence and emotions between the groups of AR and mobile blended learning	Self-developed application for mobile devices recogniz- ing markers overlaying im- ages onto user's body (45 minutes)	AR	14.5	6
Rai, Rai, Mav- rikakis, & Lam (2017)	Validation and assessment of the efficacy of an HMD- based application (Training ophthalmoscopy on head phantom)	Prospective three-group RCT (28 novice residents and 3 fellows (experts), Con- trol=15; AR=13; No training=3 (experts))	Test: 1) Total time 2) Total score 3) Performance (task scores/time)	Time required was not sig- nificantly different (p=.11), but the AR group signifi- cantly demonstrated superi- ority in total score (p=.02) and performance (p=.006). Fellows outperformed novice residents despite no prior ex- perience with simulator	Company-developed for HMD connected to com- puter recognizing a model lens and a head phantom (About 2 hours)	AR	14.5	5
Robinson et al. (2014)	Evaluation of a new MR part-task trainer	Mixed methods study: Three-group non-ran- domized comparison and survey	Test (pre- and post-in- tervention without assistive technology): 1) SCVA score	All participants significantly improved SCVA score (p<.0001) and time (p<.0001). The participants	Self-developed for computer with tracker sensor-recogniz- ing a virtual model of the phantom registered within a	MR	13.5	7

	(Simulating subclavian ve- nous access (SCVA/CVC) without US-guidance on phantom)	(65 physicians of differ- ent training categories, novices=25; intermedi- ates=24; experts=16)	 2) Time 3) No. attempts 4) No. skin punctures 5) Success rate 6) Complication rates (pneumothorax and subclavian puncture) Questionnaire: 5) Likert scale on LE (usability) 6) Likert scale on performance confidence (preand post-intervention) 	significantly reduced no. at- tempts (p<.0001), no. skin punctures (p=.0007), but no significant difference was found though success rate was increased (p=.08). Both complication rates fell with MR. The majority 95.4% strongly agreed the usability for fu- ture CVC. Confidence significantly rose (p<.0001)	3D-printed phantom built- up of head and thorax CT scan (Until users felt confident)			
Rochlen, Levine, & Tait (2017)	Evaluation of usability of an HMD-based needle guidance system (Simulating CVC without US-guidance on phantom)	Mixed methods study: Two-group non-ran- domized comparison and survey (40 medical students /participants, No prior CVC train- ing=13; prior CVC training=27)	Test: 1) Correct identification 2) Correct needle inser- tion (accuracy) 3) Time Questionnaire: 4) Likert scale on LE 5) Open-ended evalua- tion (ergonomics)	No significant difference in identification, needle inser- tion, and time expense be- tween experienced and non- experienced. Participants favored AR in visualizing anatomy 92.5% and for incorporation into training 82.1%. Evaluation addressed issues of poor ergonomics <44.4%	Self-developed for HMD with external camera recog- nizing markers on needle and phantom (Until users felt confident)	AR	14	3
Siebert et al. (2017)	Comparative investigation of adherence to a guideline adapted for HMD (Simulating pediatric cardio- pulmonary resuscitation on phantom)	Mixed methods study: Prospective RCT and survey (20 residents, pocket ref- erence cards/Con- trol=10; AR=10)	Test (deviation from guidelines): 1) Time to first defibril- lation/DF 2) Time to first com- pression 3) Drug and shock doses 4) No. of shocks Questionnaire: 5) Likert scale on LE (stress perception)	Adherence by time to first DF and compressions were not improved, but errors were significantly reduced in administering shock doses vs. Control (p<.001). No significant difference in stress response (p=.38)	Self-developed for HMD rendering guideline cards in the glasses with touchpad to navigate between the content (15 minutes)	AR	13.5	6

Solbiati et al. (2018)	Preliminary assessment of a needle guidance system (Simulation CT scan-guided needle insertion into phan- tom, porcine, and cadaver)	Single group posttest (proof-of-concept study) (Study participants not specified)	Test: 1) Computed accuracy (mm)	An acknowledged targeting accuracy was achieved in all cases but in the breathing porcine model	Self-developed for mobile devices recognizing markers on tool and phantom-por- cine-cadaver. (Not reported)	AR	8.5	2
Sutherland, Hashtrudi-Zaad, Sellens, Abolmaesumi, & Mousavi (2013)	Demonstration of the poten- tial and functionality of an application (Simulating US-guided spi- nal needle insertion on phan- tom)	Two-group non-ran- domized comparative survey (10 participants, resi- dents=4; students and technicians=6)	Test: 1) Force (traversing of tissue) Questionnaire: 1) Likert scale on LE (functionality)	Peak values of the forces and the pattern of the profile cor- responded to related work. The system was positively re- viewed on the system regard- ing functionality, visual feed- back, and haptic feedback	Self-developed for computer coupled to a haptic device with stylus and camera rec- ognizing sensors attached to a dummy ultrasound probe and a phantom. (5-10 minutes)	AR	9.5	2
L. L. Wang, Wu, Bilici, & Tenney- Soeiro (2016)	Implementation and demon- stration of a prototype (Test preparation for neuro- logic clinical shelf exam)	Single-group survey (24 medical students)	Questionnaire: 1) Query of LE (utility)	Upon demonstration 100% of participants agreed that AR improved the learning capacity for the textbook	Self-developed for mobile devices recognizing markers in printed book (Demonstration)	AR	7	1
Wang et al. (2017)	Evaluation of feasibility and user experience of an HMD- based telemedicine mentor- ing platform (Training US examination for trauma on healthy patient under guidance of mentor)	Three-group non-ran- domized comparison and survey (24 medical students and 1 mentor, Full telemedicine setup/Control=12; AR=12; mentor=1)	Test: 1) Expert-Global Rating Scale for performance 2) Completion time Questionnaire: 3) Likert scale on LE (utility) 4) Cognitive load	Performance of the AR group was not significantly improved (p=.534), but the AR group had a significant prolonged completion time (p=.008). The AR group showed no significant difference though they favored the utility of AR (p=.065) and reported a lower cognitive load (p=.28)	Self-developed for HMD with an ultrasound probe connected to computer and live-streamed to mentor con- nected to a sensor-controller projecting mentor's hands and gestures back into the AR space of the trainees (No prior training)	AR	12	7

Zhu, Fors, & Smed- berg (2018)	Exploration of needs and challenges in applying AR in continuing professional de- velopment (CPD) (Training of general practi- tioners within primary care in China)	Qualitative semi-struc- tured face-to-face inter- views (13 physicians and 2 managers)	Questionnaire: 1) Interview on attitudes toward usage 2) Query of suitability for subjects in future	The participants reacted pos- itively to usage of AR in CPD, especially concerning visualization and skill train- ing. The design should improve competencies, understand learning needs, and stimulate positive attitudes toward technology	Company-developed appli- cation for mobile devices (Demonstration)	AR	12 (AQRAME) (12)	6
-----------------------------------	--	--	--	---	--	----	------------------------	---

KEY: HMD, head-mounted display; AR, augmented reality; MR, mixed reality; LE, learning experience; CVC, central venous catheterization; US, ultrasound