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General Medical Council (GMC) in the UK has emphasized 
the importance of internal consistency for students’ assess-
ment scores in medical education.1 Typically Cronbach’s 
alpha is reported by medical educators as an index of 
internal consistency. Medical educators mark assessment 
questions and then estimate statistics that quantify the 
consistency (and, if possible, the accuracy and appropriate-
ness) of the assessment scores in order to improve subse-
quent assessments. The basic reason for doing so is the 
recognition that student marks are affected by various types 
of errors of measurement which always exist in student 
marks, and which reduce the accuracy of measurement. The 
magnitude of measurement errors is incorporated in the 
concept of reliability of test scores, where reliability itself 
quantifies the consistency of scores over replications of a 
measurement procedure. Therefore, medical educators need 
to identify and estimate sources of measurement error in 
order to improve students’ assessment.  

Under the Classical Test Theory (CTT) model, the stu-
dent’s true score is the sum of the student’s observed score 
and a single undifferentiated error term. Using this model, 
the most frequently reported estimate of reliability is 
Cronbach’s alpha. Almost always, however, when alpha is 
reported, it incorporates errors associated with sampling of 
items, only. Accordingly, alpha does not allow us to pin-
point, isolate, and estimate the impact of different sources of 
measurement error associated with observed student marks. 
An extension of CTT called “G (Generalizability) theory” 
enables us to differentiate the multiple, potential sources of 
measurement error called “facets” (sometimes called 
“dimensions” in experimental design literature). For exam-
ple, in an OSCE exam, a student might be observed by one 
of a large sample of examiners, for one of a large sample of 
standardized patients (SPs), and for one of a large sample of 
cases. The facets, then, would be examiners, SPs and cases--
-each of which serves as a potential source of measurement 
error. The set of all facets constitutes the universe of admis-
sible observations (UAO) in the terminology of G theory. 
As another example, suppose that for a cardiology exam, the 

investigator is interested in an item facet, only; in that case, 
there is only one facet.     

There is no right answer to the question of which facets, 
or how many facets, should be included in the UAO. It is 
the investigator’s responsibility to justify any decision about 
the inclusion of facets, and provide supporting evidence 
about the importance of each facet to the consistency and 
accuracy of the measurement procedure.  G theory provides 
a conceptual framework and statistical machinery to help an 
investigator do so. 

For any given form of a test, there are a specified num-
ber of conditions for each facet. The (hypothetical) set of all 
forms similarly constructed is the called the universe of 
generalization (UG). For any given examinee, we can 
conceive of getting an average score over all such forms in 
the UG.  This average score is called the student’s universe 
score, which is the analogue of true score in CTT. The 
variance of such universe scores, called universe score 
variance, can be estimated using the analysis of variance 
“machinery” employed by G theory. 

G theory can accommodate numerous designs to exam-
ine the measurement characteristics of many kinds of 
student assessments. If medical educators wish to investi-
gate assessment items as a single source of measurement 
error on a test, this is a single facet design. There are two 
types of single-facet designs. If the same sample of questions 
is administered to a cohort of students, we say the design is 
crossed in that all students (s) respond to all items (i). This 
crossed design is symbolised as s × i, and read students are 
crossed within items. If each student takes a different set of 
items, we have a nested design, which is symbolised i:s 
meaning that items are nested within students.  

In most realistic circumstances there are facets in addi-
tion to items. Imagine a case-based assessment with four 
cases and a total of 40 items designed to measure the ability 
of students about dermatology. In this example, all students 
take all items; hence, students are crossed within items (s × 
i), but items are distributed into cases (e.g., 10 items in case 
1, 10 items in case 2, 10 items in case 3 and 10 items in case 
4). That is, items are nested within cases, and this design is 
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called a two-facet nested design that is symbolised as  
s × (i:c). 

The designs discussed in the previous paragraphs are 
usually called G study designs, and they are associated with 
the UAO. The principal purpose of such designs is to collect 
data that can be used to estimate what are called “variance 
components.” In essence, the set of variance components 
for the UAO provides a decomposition of the total observed 
variance into its component parts. These component parts 
reflect the differential contribution of the various facets; i.e., 
a relatively large variance component associated with a facet 
indicates that the facet has a relatively large impact on 
student marks. For example, in an OSCE, if the variance 
component for examiners (the examiner facet) is estimated 
as high, we would conclude that the examiners have not 
behaved consistently in their rating of the construct of 
interest.  

Once variance components are estimated, typically in-
vestigators estimate error variances and reliability-like 
coefficients that are associated with the UG. Such coeffi-
cients can range from 0 to 1. One coefficient is called a 
generalizability coefficient; it incorporates relative error 
variance. Another coefficient is called a Phi coefficient; it 
incorporates absolute error variance. Computing these 
coefficients and error variances requires specifying the D 
study design which, in turn, specifies the number of condi-
tions of each facet that are (or will be) used in the opera-
tional measurement procedure. Relative error variance 
(and, hence, a generalizability coefficient) is appropriate 
when interest focuses on the rank ordering of students.  
Absolute error variance (and, hence, a Phi coefficient) is 
appropriate when interest focuses on the actual or “abso-
lute” scores of students.  Relative error variance (for a so-
called “random effects” model) involves all the variance 
components that are interactions between students and 
facets. Absolute error variance includes relative error 
variance plus the variance components for the facets them-
selves. The square root of these error variances are called 
standard errors of measurement.  They can be used to 
establish confidence intervals for students’ universe scores.  
For further information about the these coefficients and 
error variances, readers may refer to particular books.2,3   

Knowing the magnitude of estimated variance compo-
nents enables us to design student assessments that are 
optimal, at least from a measurement perspective. For 
example, a relatively small estimated variance component 
for the interaction of students and items suggests that a 
relatively small number of items may be sufficient for a test 
to achieve an acceptable level for a generalizability coeffi-
cient.   

In practice, powerful computer programs are required 
to estimate variance components, coefficients, and error 
variances, especially for multifaceted designs. Several G 

theory software programs have been developed for  
estimating such statistics (see, for example, http://www. 
education.uiowa.edu/centers/casma/computer-programs). 

 Variance components can also be estimated using SPSS 
and SAS, but these packages do not directly estimate 
coefficients and error variances. The first author is develop-
ing an online user friendly application for estimating 
variance components, for both balanced and unbalanced 
designs. Using a simple script, readers will be able to print 
out the estimates of important parameters in G theory.  The 
application is written in R and C++ languages and executed 
by PHP codes. Figure 1 shows a balanced design output 
from the application.  

 

 

 

Figure 1. A sample output of G and D studies (p×i); number of 
items is 12 for the numerical estimates of coefficients and SEMs. 
The data are taken from Brennan’s book, page 28. 

References 
1. General Medical Council. Workplace based assessment: a guide for 
implementation. London: General Medical Council; 2012. 
2. Brennan R. Generalizability theory. New York: Springer-Verlag; 2010. 
3. Shavelson R, Webb N. Generalizability theory: a primer. Newbury Park: 
Sage Publication; 1991. 
 
 


	Medical education assessment: a brief overview of concepts in generalizability theory
	Figure 1.
	References


